DEFORMATION-MECHANISM
MAPS
The Plasticity and Creep of Metals and Ceramics

Home Text Symbol Reference Interactive Plots

List of Symbols, Definitions and Units
Macroscopic Variables Equation Number
Other Variables and Constants Equation Number
epsilon Normal (tensile or compressive strain) 17.7
F Force per unit length on a dislocation (N/m) 2.4
epsilon^T Transient strain 17.9
f_v,f_c Fraction of atom sites associated with lattice and core diffusion respectively 2.20
epsilon dot Strain rate (s-1) 1.5
G,Delta G Gibbs free energy (J/mol) 2.6, 2.10
epsilon dot_1,epsilon dot_2,epsilon dot_3 Principal strain rates (s-1) 1.3
Gamma Grain boundary energy (J/m2)
epsilon dot_ij Strain rate tensor (s-1) 1.4
gammagamma dot Shear strain (rate); see Macroscopic variables
gamma Shear strain 1.3
gamma_A Activity coefficient of component A, etc. 2.28
gamma^T Transient shear strain 17.10
gamma dot_LIM Upper limiting strain rate (taken as 106/s) 17.13
gamma dot Shear strain rate (s-1) 1.3, 1.4, 1.5
gamma dot_0,gamma dot_p,gamma dot_t Pre-exponential constants (s-1) 2.9, 2.12, 2.15
gamma dot_1,gamma dot_2. . .gamma dot_8 Shear strain rates of individual mechanisms (s-1) 2.1, 2.9, 2.12, 2.21, 2.23, 2.26, 2.29
KappaKappa_0 Bulk modulus (at 300 K and atmospheric pressure) (MN/m2) 17.37
gamma dot_pl Shear strain rate caused by low-temperature plastic mechanisms (s-1) 3.1
Kappa Work-hardening constant in tension (MN/m2) 17.6
gamma dot_PD Shear strain rate limited by phonon drag (s-1) 2.14
Kappa_s Work-hardening constant in shear (MN/m2) 17.6
gamma dot_t Shear strain rate limited by twinning (s-1) 2.15
kappa Boltzmann's constant (1.381 x 10-23 J/K)
p Hydrostatic pressure (MN/m2) 17.37
kappa Thermal conductivity (J/s m K) 17.20
sigma_n Normal (tensile or compressive) stress (MN/m2) 2.17
l Obstacle spacing (m) Table 2.1
sigma_1,sigma_2,sigma_3 Principal stresses (MN/m2) 1.1
M Dislocation mobility (m2/Ns) 2.4
sigma_ij Stress tensor (MN/m2) 1.2
m Strain hardening exponent 17.6
sigma_s Shear stress (MN/m2) 1.5
mumu_0 Shear modulus (at 300 K and atmospheric pressure) (MN/m2) 2.1, 2.3, Table 2.1
S_ij Deviatoric part of the stress tensor (MN/m2) 1.2
n,n^prime Creep exponent 2.18, 2.19, 2.26
t Time (s) 17.3
nu Debye frequency (taken as 1012/s) 2.5
T Temperature (K) 1.6, 1.12
P_j Material property 1.6
Other Variables and Constants Equation Number
p Hydrostatic pressure; see Macroscopic variables (MN/m2) 17.37
A,A_1,A_2 Power-law creep constants 2.18, 2.19
p Dimensionless exponent 2.7
A_HD Constant for Harper-Dorn creep 2.23
p_0 Atmospheric pressure (0.1 MN/m2) 17.37
a_c Diffusive section of a dislocation core (m2) 2.20
Q_c,Q_b,Q_v Activation energies for lattice, boundary and core diffusion respectively (kJ/mol) 2.17, 2.20, 2.30
alpha Dimensionless ideal strength 2.1
Q_cr Activation energy for creep when different from Qv, Qb or Qc (kJ/mol) 2.24
alpha Dimensionless constant for low-temperature plasticity 2.7
q Dimensionless exponent 2.17
alpha^prime Constant for power-law breakdown (MN/m2) 2.26
q dot Heat generation rate (J/m3 s) 17.14
B Drag coefficient (Ns/m2) 2.13
R Gas constant (8.314 J/mol K)
b Magnitude of Burgers' Vector (m) 2.2
rho Dislocation density (m-2)
b_b Burgers' Vector of boundary dislocation (m) 17.25
rho_b Density of boundary dislocations (m-1) 17.29
beta Constant for low-temperature plasticity 2.7
rho_m Mobile dislocation density (m-2) 2.3
beta^prime Constant for power-law breakdown 2.26
S_iS_i^0 State variable (constant initial value) 1.6, 1.10
C_p Specific heat at constant pressure (J/m K) 17.16
sigma Stress; see Macroscopic variables (MN/m2)
C Constant for drag-limited glide 17.12
sigma_y Tensile yield strength (MN/m2)
c_11,c_12,c_44, etc. Single-crystal moduli (MN/m2)
T Absolute temperature; see Macroscopic variables (K) 1.6, 1.12
D_b Boundary diffusion coefficient (m2/s):
Db=D0bexp-(Qb/RT)
2.30
T_M Melting temperature (K)
D_c Core diffusion coefficient (m2/s):
Dc=D0cexp-(Qc/RT)
2.20
T_s Temperature of surroundings (K) 17.20
D_v Lattice diffusion coefficient (m2/s):
Dv=D0vexp-(Qv/RT)
2.17
t Time; see Macroscopic variables (s)
D_eff Effective diffusion coefficient for power-law creep or diffusional flow (m2/s) 2.20, 2.30
tau hat Flow strength (in shear) for obstacle cutting at 0 K (MN/m2) 2.6, 2.7
D_A,D_B Tracer diffusion coefficients for components A and B (m2/s) 2.27, 2.28
tau hat_p Lattice resistance of Peierls stress (in shear) at 0 K (MN/m2) 2.10, 2.12
D tilde Chemical interdiffusion coefficient (m2/s) 2.28
tau hat Twinning stress at 0 K (MN/m2) 2.15
d Grain size (m) 2.29, 2.30
tau_tr Threshold stress for creep (MN/m2) 17.35
delta Diffusive thickness of a grain boundary (m) 2.30
phi,Delta phi Chemical potential (J/atom) 17.27
E^EL Elastic energy of a dislocation (J/m)
phi_i,Delta phi_i Interface potential barrier (J/atom) 17.24
epsilonepsilon dot Normal strain (rate); see Macroscopic variables
V* Activation volume (m3) 17.49
F,Delta F Helmholtz free energy (J/mol) 2.6, 2.7, 2.10
chi_A,chi_B Atom fractions of A and B 2.27, 2.28
Delta F_n Free energy of twin nucleation (J/mol) 2.15
Omega Atomic or molecular volume (m3) 2.17
upsilon bar Average dislocation velocity (m/s) 2.3, 2.5
Omega_i Ionic volume (m3) 2.29
upsilon_c Average climb velocity (m/s) 2.17